Archive for the tag 'Kühlung'

Immer kälter: Herschel und Planck

Mai 28th, 2009

Herschels Visual Monitoring Camera zeigt die Abtrennung vom Nutzlastadapter Sylda 5 mit Planck, der sich erst zwei Minuten darauf abtrennte. Die Aufnahme wurde rund 1.150 Kilometer über Ostafrika aufgenommen.  (ESA)

Herschels Visual Monitoring Camera zeigt die Abtrennung vom Nutzlastadapter Sylda 5 mit Planck, der sich erst zwei Minuten darauf abtrennte. Die Aufnahme wurde rund 1.150 Kilometer über Ostafrika aufgenommen. (ESA)

Nach ihrem erfolgreichen Start an Bord einer Ariane-5-ECA-Trägerrakete am 14. Mai in den fast wolkenlosen Himmel über Kourou in Französisch-Guayana (Raumfahrer.net berichtete), nähern sich beide Teleskope ihrem finalen Orbit um den Lagrange-2-Punkt an.

Die Minuten nach dem Start wurden von der Astronomengemeinde ausgiebig und mit einigem Bangen verfolgt. Immerhin standen zwei Nutzlasten auf der Rampe, deren Arbeit die astronomische Forschung der nächsten Jahre dominieren dürfte. Gleichzeitig haben sie einen großen Brocken des ESA-Budgets verschlungen. Weltweit waren eine Vielzahl Teleskope auf die sich bewegenden Punkte am Himmel gerichtet. Die ESA-Bodenstation auf Teneriffa konnte drei sich bewegende Punkte in einer Animation aufnehmen: Herschel, Planck und den Nutzlastadapter Sylda 5. Vergleichbares gelang dem australischen 3,5-Meter-Teleskop Faulkes.

Mit vorsichtigen Schritten zum L2

Während Sylda 5 – der Nutzlasten entledigt – in einen heliozentrischen Orbit eintreten wird, müssen die Teleskope vorsichtig an ihre Zielumlaufbahn herangeführt werden. Der L2-Punkt liegt von der Sonne aus gesehen „hinter“ der Erde, hier gleichen sich die Anziehungskraft von Erde und Sonne und die Fliehkraft der Umlaufbahn aus. Der L2-Punkt ist nur mit viel Fingerspitzengefühl zu erreichen. Mit rund acht Kilometern pro Sekunde bewegt sich ein Satellit auf einem stabilen erdnahen Orbit. Um den L2-Punkt zu umkreisen, darf er sich mit rund 50 Metern pro Sekunde relativ zur Erde fast gar nicht mehr bewegen. Dafür vollführen die Raumfahrzeuge winzige und sehr genaue Manöver – und sie müssen sich dafür viel Zeit lassen. Rund 60 Tage setzt die ESA daher für diese erste Missionsphase an.

Beide Satelliten führten einen Tag nach ihrem Start erste Manöver durch. Planck folgte mit einem zweiten Manöver am 18. Mai. Herschel wurde am gleichen Tag um nur 99 Zentimeter pro Sekunde beschleunigt. Während Herschel nun bereits seinen Zielorbit erreichen kann, sind für Planck am 5. Juni und am 2. Juli zwei weitere Kurskorrekturen geplant. Das Observatorium wird den L2-Punkt in einem engeren Orbit umlaufen als Herschel.

Energie- und Kälteversorgung

Animation des Überflugs von Herschel, Planck und Nutzlastadapter Sylda 5 mehrere Stunden nach dem Start. Das 1-m-Teleskop der ESA auf Teneriffa konnte die drei Objekte abbilden, als diese bereits mehr als 100.000 Kilometer von der Erde entfernt waren. (ESA)

Animation des Überflugs von Herschel, Planck und Nutzlastadapter Sylda 5 mehrere Stunden nach dem Start. Das 1-m-Teleskop der ESA auf Teneriffa konnte die drei Objekte abbilden, als diese bereits mehr als 100.000 Kilometer von der Erde entfernt waren. (ESA)

Schon während der Orbiteinschwenkung werden die Instrumente der Observatorien der Reihe nach eingeschaltet. Essentieller Teil beider Missionen sind jedoch die komplexen Kühlsysteme, welche die exakten Messungen erst ermöglichen. Diese sind zwiebelschalenartig mit absteigenden Temperaturniveaus gestaffelt und werden nun, von der höchsten Kühltemperatur beginnend, aktiviert.

An Bord von Herschel wurde das Teleskop bereits einen Tag nach dem Start auf die Dekontaminierungstemperatur von 170 K (-103°C) gebracht, bei der ein Einfrieren des Spiegels durch Ausgasungen des Teleskops verhindert werden soll. Der Kryostat, der mit flüssigem Helium und der Trennung verschiedener Helium-Isotope arbeiten wird, funktioniert laut ESA einwandfrei. Bis zur Aktivierung der vollen Kühlleistung von Planck ist Herschels SPIRE-Instrument mit 292 mK (0,292 K) nun der kälteste Punkt des Universums, sieht man von irdischen Tieftemperaturlaboren ab.

Auch an Bord von Planck wurden die ersten Kühlsysteme in Betrieb genommen, bisher bis hinunter zum 4K-Kreislauf, der über die Verdampfung von flüssigem Helium arbeitet. Das HFI-Instrument ist bereits in Betrieb und wartet nun darauf, dass die untergeordneten Kühlkreisläufe betriebsfähig sind. Damit werden 0,1 K erreicht.

Beide Missionen haben durch den absolut planmäßigen Einschuss durch den Träger vermutlich etwas Missionszeit geschenkt bekommen. Denn so wird in dieser ersten Orbitannäherungsphase deutlich weniger Treibstoff verwendet, als aus Toleranzgründen eingeplant. Letztlich wird jedoch wie beim Spitzer-Infrarotteleskop der NASA der Kühlmittelverbrauch die Lebensdauer bestimmen. Nur zwei Tage nach dem Start der ESA-Teleskope musste die NASA planmäßig einen leeren Kühlmitteltank vermelden. Die europäische Ablösung steht bereit.

Herschel und Planck: Ein Blick hinter die Kulissen

April 26th, 2009

Das nach dem Uranusentdecker Wilhelm Friedrich Herschel benannte Teleskop ist mit 3.900 kg das Schwergewicht des Starts und besitzt mit 3,5 Metern Durchmesser die größte jemals ins All gestartete Teleskopschüssel. Um leuchtschwache Infrarotobjekte präzise aufnehmen zu können, darf Herschels Arbeit nicht durch Störsignale anderer Himmelskörper oder gar von sich selbst beeinflusst werden. Die Messinstrumente, die im Ferninfrarot sowie im Submillimeter-Bereich arbeiten, werden von superfluidem Helium auf bis zu -272,85 °C oder 0,3 K heruntergekühlt. Dafür sind die drei Spektrometer in einer großen Thermosflasche – dem Cryostaten – untergebracht. Rund 2.400 Liter flüssiges Helium werden seine Missionsdauer auf rund vier Jahre begrenzen. Ist das Kühlmittel verbraucht, sind keine exakten Messungen mehr möglich. Bis dahin wird das ESA-Teleskop die Arbeit seines US-Kollegen Spitzer und in einem deutlich breiteren Frequenzspektrum fortsetzen. Das Infrarot-Teleskop der NASA startete bereits 2003 und wird sein Kühlmittel in Kürze aufgebraucht haben.

Gelingt der ESA die Abschirmung, wird Herschel Einblicke in Raumregionen erhalten, die bisher durch dichte Staubwolken verhüllt waren. Infrarotstrahlung kann diese anders als sichtbares Licht durchdringen und ermöglicht es dem Teleskop, etwa die Entwicklung von Galaxien im jungen Universum zu untersuchen. Auch zukünftige Sonnensysteme sind von dichten Staubscheiben umgeben, aus denen sich später Planeten entwickeln können. Die Details dieser Prozesse waren bisher nur schwer zu beobachten. Herschel soll zudem die Molekülchemie von Planeten, Asteroiden und von weiter entfernten Objekten analysieren.

Die Schwerlastvariante ECA der Ariane-Trägerrakete wird die gemeinsam 5.300 kg schwere Doppelnutzlast nahe dem Lagrange 2-Punkt (L2) aussetzen. Hier gleichen sich die Schwerkraft von Sonne und Erde aus und beide Körper stehen ständig an derselben Stelle. Obwohl dies für die thermische Abschirmung der beiden Teleskope von Vorteil ist, haben die Orbits um den L2-Punkt den entscheidenden Nachteil der Bahninstabilität, so dass alle drei Wochen eine Kurskorrektur notwendig wird.

Nachdem die Ariane-Oberstufe Herschel in einen Transferorbit abgesetzt hat, kommt wenig später Planck an die Reihe. Die Aufgabe des Observatoriums besteht in der genauen Vermessung der CMB: Als das Universum 380.000 Jahre nach dem Urknall durchsichtig wurde, hatte es eine Temperatur von rund 3.000 K. Durch seine Expansion vergrößerte sich die Wellenlänge des Strahlungshintergrunds und die Temperatur des Universums sank auf den heutigen Wert von 2,7 K. Die Hintergrundstrahlung ist von Objekten unabhängig und verteilt sich relativ gleichförmig über die gesamte Himmelskugel.

Plancks Vorgängermissionen COBE (1989 – 93) und WMAP (Start 2001) der NASA hatten erstmals Karten des CMB erstellt und damit die Urknallhypothese untermauert. Planck wird die Auflösungsfähigkeit von COBE um den Faktor 50 sowie die von WMAP um den Faktor drei übertreffen. Das Observatorium wird Temperaturen von einem Millionstel Kelvin sowie Strukturen im Bereich von fünf Bogenminuten auflösen können. Laut ESA entspricht dies der erdgebundenen Messung der Wärmeabstrahlung eines lebendigen Hasen auf der Mondoberfläche.

Während das High Frequency Instrument (HFI) im Radiowellenbereich arbeitet, wird das Low Frequency Instrument (LFI) Mikrowellenstrahlung detektieren. Beide Bereiche gehören zum kosmischen Strahlungshintergrund. Das Problem seiner exakten Vermessung sind die effektive Abschirmung und Kühlung der sensiblen Detektoren. Bereits durch seinen Aufbau ist Planck passiv gekühlt: Die Abwärme der Instrumentensektion wird durch Radiatoren ins All abgeführt, so dass sich die Temperatur bei rund 50 K halten kann. Die Instrumente werden von den beheizten Komponenten des Servicemoduls abgeschirmt, das Systeme zur Datenverarbeitung, Kommunikation und Steuerung der Instrumente enthält.

Zwei weitere Kryosysteme kühlen HFI und LFI weiter herunter: mit flüssigem Wasserstoff auf 20 K, während die Strecke zwischen Teleskop und Wärme messenden Bolometern des HFI mit flüssigem Helium auf 4 K gebracht wird, dem Siedepunkt von Helium. Der technologische Gral sitzt jedoch im dritten Kühlkreislauf: Damit werden Thermometer, Bolometer und Filter auf Temperaturen zwischen 1,6 und 0,1 K gebracht. Das System setzt auf die Lösung des Helium-Isotops 3He in 4He, die in superfluidem Zustand vorliegen. In diesem Zustand unter extrem niedrigen Temperaturen und hohem Druck wirken keine internen Reibungskräfte mehr und Lösungsvorgänge können auch in Schwerelosigkeit funktionieren.

Mit Planck sollen fundamentale Probleme der Kosmologie beleuchtet werden: Wie ist es um die Expansion des Universums bestellt, beschleunigt sie sich tatsächlich? Eng damit verbunden ist die Frage der Baryonendichte, also dem Anteil der atomaren Materie im gesamten Universum verglichen mit der kaum verstandenen Dunklen Materie und Dunklen Energie. Die Modelle zur Entwicklung des jungen Universums sind bisher nur ansatzweise durch Beobachtungen nachgewiesen worden, weil ausreichend genaue Beobachtungsdaten fehlten. In der sogenannten Inflationsphase machte es laut dem theoretischen Physiker Alan Guth eine extrem schnelle Ausdehnung mit, womit die heutige Flachheit des Raums erklärt werden kann. Die hohe Energiedichte hätte nach Modellrechnungen sonst einen deutlich stärker gekrümmten Raum hervorgerufen, als wir ihn heute beobachten. Sollte es jedoch Inkonsistenzen im Theoriengebäude der Kosmologen geben, könnte Planck diese aufdecken. Dazu gehören vorhergesagte topologische Defekte wie kosmische Strings. Die Existenz dieser extrem dünnen und über viele Lichtjahre ausgedehnten massereichen Bänder könnten nach dem heutigen Urknallmodell entstanden sein, wurden bisher aber nicht gefunden.

Wilhelm Friedrich Herschel und Max Planck sind die Namen großer Forscher, die das Wissen ihrer Zeit fundamental erweiterten und veränderten. Die ESA-Missionen werden dem Ruf ihrer Namensgeber durch technologische Quantensprünge gerecht und werden vielleicht schon bald unser physikalisches Weltbild zu verändern.
Technische Daten

Herschel Planck
Startmasse: 3.900 kg 1.400 kg
Ausmaße: 7,2 x 4 x 4 m 4,2 Durchmesser, 4,2 m hoch
Kühlmittel: 2.400 Liter 1.500 Liter
Nominale Missioszeit: 3 Jahre 15 Monate
Teleskop: 3,5 m Cassegrain, 0,3 m sekundär 1,9 x 1,5 m
Frequenzbereich: 55 bis 672 µm (Nah- und Ferninfrarot) 27 GHz bis 1 Thz (Radio- und Mikrowellen)
Missionskosten: ca. 1 Mrd. Euro ca. 600 Mio. Euro