Alle Artikel mit dem Schlagwort: Erde

Vor einem schwarzen Hintergrund ist im Zentrum ein orange-gelblicher Kreis zu sehen, umgeben von mehreren konzentrischen Ringen, die ebenfalls orange-gelblich eingefärbt sind und deren Dichte nach außen hin abnimmt.

Der hellste Gammablitz aller Zeiten

Eigentlich wollten die USA nur überprüfen, ob sich auch alle Beteiligten an den Partiellen Teststopp-Vertrag halten, der bestimmte Atomwaffentests und andere Kernexplosionen verbot: Dafür wurden in den 1960er-Jahren die Vela-Satelliten in hohe Erdumlaufbahnen geschickt. Doch zunächst fanden diese Satelliten keine Anzeichen auf geheime Kernwaffen-Tests, sondern auf mysteriöse helle Lichter aus dem All: Diese Gammablitze leuchteten im hochenergetischen Gammastrahlenbereich sekundenlang auf, bevor sie wieder verblassten. Sie schienen von überall her aus dem All zu kommen – was steckte dahinter?

Heute wissen wir: Gammablitze kommen von sehr weit weg, zum Glück, möchte man sagen: Denn würde ein Gammablitz von nebenan auf die Erdatmosphäre treffen, hätte das drastische Auswirkungen auf die Erde und auf das Leben auf ihrer Oberfläche. Ein solcher Gammablitz könnte ein Massenaussterben auslösen – und vielleicht ist das in der Vergangenheit schon einmal passiert.

In dieser Folge des AstroGeo-Podcasts erzählt Franzi die Geschichte der Gammablitze und was wir über sie bereits wissen. Und sie erzählt vom 9. Oktober 2022, als der bislang hellste jemals gemessene Gammablitz namens GRB 221009A auf die Erdatmosphäre traf, Spitzname: BOAT – brightest of all time.

Viele verwobene blaue und gelbe Magnetfeldlinien, die im Kern zu einem runden Knäuel verdrillt sind.

Rätselhaftes Erdmagnetfeld: vom Kompass zum Supercomputer

Es schützt uns vor gefährlichen Ausbrüchen der Sonne und zaubert Polarlichter an den Himmel: Heute wissen wir, dass wir dem Magnetfeld der Erde eine Menge verdanken. Tatsächlich aber dauerte es 2500 Jahre, um zu verstehen, wie es entsteht.

Karl erzählt in dieser Folge des Podcasts, wie das Erdmagnetfeld über die Jahrhunderte immer genauer untersucht wurde, ohne dass Forscherinnen und Forscher ihm wirklich auf die Schliche kommen konnten. Beginnend vom ersten Kompass im alten China, über erste Versuche mit runden Magneten bis zur Entdeckung des Elektromagnetismus im 19. Jahrhundert: Der Geodynamo tief im Erdinnern weigerte sich, seine wahre Natur zu zeigen.

Am Ende brauchte es tief gehende Erkenntnisse aus der Geologie und Supercomputer, um dem Erdmagnetfeld mit seinen verwirrenden Schwankungen und Umpolungen auf die Schliche zu kommen.

Eine Karte von Alaska, an der Südküste markieren rote Ringe ein Epizentrum

Subduktion: Das tiefe Geheimnis des Blauen Planeten

Am 27. März 1964 bebt im südlichen Alaska die Erde – mit verheerenden Folgen. Straßen, Brücken und Häuser werden schwer beschädigt, 131 Menschen verlieren ihr Leben. Ein ganzer Landstrich entlang der Küste wird bis zu acht Meter angehoben und weiter landeinwärts massiv abgesenkt. Mit einer Stärke von 9,2 gilt das Erdbeben von Alaska auch heute noch als die zweitstärkste Erderschütterung seit Messbeginn. Für Geologinnen und Geologen der Zeit ist das Beben ein Rätsel: Welcher Mechanismus mag sich hinter einem solch gewaltigen Ereignis verbergen?

Karl beginnt diese Podcastfolge mit der Entdeckung eines der wichtigsten Prozesse auf der Erde: Es sind Subduktionszonen, in denen feste Platten der Erdkruste ruckartig tief in den Erdmantel einsinken – so auch unter dem südlichen Alaska. Das Erdbeben von 1964 half dabei, diesen Prozess zu verstehen und schloss gleichzeitig eine wichtige Lücke im Verständnis der Plattentektonik, bei der feste Kruste nicht nur ständig neu entsteht, sondern andernorts auch wieder verschwindet.

Heute ist klar: Subduktionszonen sind der wahre Motor der Plattentektonik – und nicht nur das. Über lange Zeiträume helfen sie dabei, das Klima der Erde einigermaßen stabil zu halten. Deswegen stellt sich nicht nur die Frage, warum sich auf der Erde feste Gesteinsplatten bewegen können, sondern auch, warum die Kruste von Venus und Mars nie in Platten zerbrach. Möglicherweise blieben sie gerade deshalb tote, trockene Wüsten.

Abendstimmung, Hausdächer zeichnen sich gegen den noch blau glimmenden Himmel ab, darüber schlierenartige leuchtende Nachtwolken und eine dünne Mondsichel

Leuchtende Nachtwolken: ästhetische Boten der Klimakrise

Im August 1883 ereignet sich zwischen den Inseln Java und Sumatra im heutigen Indonesien eine Katastrophe: Ein Vulkan bricht mit solcher Macht aus, die zuvor nur selten beobachtet worden ist. Der Ausbruch des Krakatau fordert so viele Menschenleben wie nie zuvor in der Geschichte – und er verändert sogar die Atmosphäre nachhaltig. Sulfatpartikel färben über einige Jahre die Sonnenuntergänge weltweit in intensiven Tönen. Aber da ist noch mehr: Aschepartikel und Wasserdampf des Ausbruchs lösen ein neues Phänomen in den oberen Schichten der Atmosphäre aus, das bis heute existiert. Es sind Wolken, die bei Nacht leuchten.

In dieser Folge des AstroGeo Podcasts erzählt Karl von leuchtenden Nachtwolken und wie sie erstmals beobachtet wurden. Vor allem geht es darum, wie genau diese Wolken entstehen können und ob in neuerer Zeit nicht auch andere Faktoren zu ihrer Bildung beitragen. Denn leuchtende Nachtwolken sind nicht nur schön anzusehen – sie sind auch ein deutliches Zeichen dafür, wie rasant wir das Klima der Erde verändern.

Ein Planet mit Atmosphäre, auf dem viele runde, gelblich glimmende Einschlagskrater und Aschewolken zu sehen sind. Im All außen herum bewegen sich Gesteinsbrocken.

Nizza-Modell: Chaos zwischen jungen Planeten

Unser kosmischer Vorgarten besteht aus Himmelskörpern, die kaum unterschiedlicher sein könnten: Da sind verschieden große Planeten und ihre Monde, von denen manche brav auf regulären und andere auf äußerst verschrobenen Bahnen kreisen. Da sind auch Asteroiden, die in Gürteln oder auf kräftefreien Punkten der Planetenbahnen herumlungern.

Karl erzählt in dieser Folge davon, wie Planeten, Monde, Asteroiden, Kometen und sonstiger planetarer Schutt an ihren heutigen Platz gekommen sind. Es geht um das Nizza-Modell, eine Simulation des Planetensystems vor rund 3,9 Milliarden Jahren, als die großen Gasplaneten sich gegenseitig in die Quere kamen und wahrscheinlich eine gewaltige Katastrophe auslösten. Dabei wurde das Planetensystem einmal durchgerührt und es entstanden gewaltige Einschlagskrater. Möglicherweise tauschten sogar einzelne Planeten ihre Plätze.

Am Ende sah es völlig anders aus als zuvor – unser kosmischer Vorgarten hatte seine heutige Form angenommen. Obwohl es einige Zweifel gibt – bis heute passt das Nizza-Modell recht gut zu unserem Sonnensystem.

Auf dunklen Felsen sitzen massenhaft braun-weiß gefiederte Vögel. Die Felsen sind fast überall weiß von Vogelkot.

Die Stickstoff-Schwemme

Eigentlich ist Stickstoff ein unverzichtbares Element für alle Lebewesen. Über Jahrmilliarden waren biologisch nutzbare Formen des Stickstoffs heiß begehrt und rar. Doch seit rund hundert Jahren hat sich die Lage auf der Erde drastisch verändert. Seitdem verschmutzt und überdüngt die Menschheit den Planeten mit Stickstoff-Verbindungen wie Nitrat, Stickoxiden, Ammoniak und Lachgas und verändert damit fundamental die Bedingungen im Spiel des Lebens – eine problematische Premiere in der Erdgeschichte.

In dieser Episode von AstroGeo taucht die Wissenschaftsjournalistin und Geoökologin Anne Preger in die Geschichte um den Stickstoff ein. Sie erzählt, welche Folgen die globale Überdosis an Stickstoffverbindungen für die menschliche Gesundheit, die Artenvielfalt, die Luftqualität und das Klima mit sich bringt und wie sich Stickstoff zielgerichteter einsetzen ließe. Zu alledem hat Anne Preger ein Sachbuch recherchiert und geschrieben.

Grafik eines Planeten, dessen Oberfläche weiß von Eis ist

Als die Erde zu Eis erstarrte

Die Vereisung fing an den Polen an. Eisschollen ballten sich zu Packeis und überspannten bald den arktischen und antarktischen Ozean. Auch Kontinente in der Nähe der Pole wurden von Eis überzogen, während von den großen Gebirgen hinab Gletscher immer tiefer in die Täler vordrangen. Es war der Beginn einer Eiszeit, die eigentlich zur Erde dazugehören: Alle paar Jahrtausende gab es in jüngerer geologischer Vergangenheit solche Phasen. Unsere Vorfahren erlebten und überlebten vor 23.000 Jahren den Höhepunkt der letzten Eiszeit. Aber diese war ganz anders.

Karl erzählt die Geschichte einer der extremsten Phasen der Erdgeschichte: Vor 650 Millionen Jahren froren nicht nur Teile der Kontinente zu, sondern die Erde gefror komplett. Alle Landmassen und Ozeane waren zwischen den Polen und dem Äquator von Eis bedeckt. Der Blaue Planet war weiß geworden. Diese Phase dauerte in zwei Episoden unvorstellbare 67 Millionen Jahre an. Die Theorie hielten die meisten Geologinnen und Geologen zuerst für so extrem, dass es fast 40 Jahre dauerte, bis die Fachwelt die Idee von Schneeball Erde akzeptierte. Denn es fand sich mitterlweile eine Erklärung, wie die zum Schneeball gefrorene Erde auftauen konnte.

Warum hat die Welt Inge Lehmann vergessen?

Geologinnen und Geologen schauen sich gerne Steine an, und das nicht nur, wenn sie glitzern und funkeln. Denn Steine verraten etwas über das Erdinnere, in dem viele von ihnen entstanden sind. Die geologische Sammelwut im Namen der Forschung hat aber ihre Grenze: Die meisten Steine, die wir finden, stammen aus der Erdkruste, der vergleichsweise dünnen äußersten Schicht des Planeten. Nur sehr selten sind Gesteine aus tieferen Schichten. Wer bis in den Erdkern blicken möchte, muss dagegen lernen, die Signale der Erdbebenwellen zu verstehen.

In dieser Episode erzählt Karl die Geschichte eines Menschen, dem es erstmalig gelang, bis hinab in den inneren Kern der Erde zu blicken. Es ist die Geschichte der dänischen Mathematikerin, Geodätin und Seismologin Inge Lehmann. Fast gleich alt wie die Physiker Albert Einstein oder Niels Bohr, forschte sie in und trotz einer wissenschaftlichen Welt, in der Frauen keine Rolle spielen durften.

Methan und organisches Material

Der Mars und die Erde sind keine Zwillinge. Während es dort nur trockene Wüsten und eine ungewöhnliche dünne Atmosphäre gibt, ist die Erde bewohnbar. Umso erstaunlicher war der Fund von Methangas in der Atmosphäre des Mars, der gerade zehn Jahre alt ist. Immerhin entweicht Methan auf der Erde neben Vulkanen auch vielen Mikroorganismen, Tieren und sogar Pflanzen. Wo genau das Marsmethan herstammt, ist bislang noch umstritten. Ein neuer Fund hat die Diskussion allerdings gerade weiter angeheizt: Der NASA-Rover Curiosity beobachtete einen rasanten Anstieg des Gases.

Ich habe deshalb das Thema mit einem Forscher diskutiert, der sich damit auskennt: Frank Keppler ist frisch berufener Heisenberg-Professor am Institut für Geowissenschaften der Universität Heidelberg. Er hat vor einigen Jahren die Methanemissionen von Pflanzen entdeckt und damit weltweit für Aufregung gesorgt. Er forscht auch zu Methanquellen auf dem Mars. Und er ist sehr vorsichtig, wenn es darum geht, über Leben auf dem Roten Planeten zu spekulieren.

Ozeanbildung ohne Kometen

Vier Monate umkreist Rosetta nun Tschurjumow-Gerasimenko. Die erste Kometenlandung ist Geschichte, der Lander Philae eingeschlafen. Die Muttersonde kreist aber weiter – und wird das wohl noch über ein Jahr lang tun. Nun gibt es erste handfeste Ergebnisse von ihr: Das Massenspektrometer ROSINA an Bord von Rosetta hat so etwas wie den Fingerabdruck des Wassers gemessen. Das Resultat scheint überraschend: Das Wasser der Erde kam kaum von einem Kometen wie Tschuri, vermutlich spielten Kometen als Wasserlieferanten überhaupt keine Rolle.

Um die neuen Daten zu verstehen, habe ich mit Kathrin Altwegg gesprochen. Sie ist Professorin in der Abteilung für Weltraumforschung und Planetologie der Universität Bern. Und sie ist verantwortlich für ROSINA: Das Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Es besteht aus zwei Massenspektrometern und einem Gasdrucksensor.